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Abstract, Charged particle propagation in irregular magnetic fields is investigated. Multiple 
small angle scattering is considered in a model field configuration. The irregular magnetic 
field components are specified by their energy density and autocorrelation function. The 
mean deviation from ideal particle direction is given explicitly. A diffusion equation with 
variable diffusion coefficient is established, ordinary diffusion theory is found to be valid 
asymptotically. Results are applied for an estimation on the range of validity of the single- 
particle approach to the propagation of primary cosmic ray particles at extremely high 
energies. 

1. Introduction 

Application of the individual-trajectory approach to the problem of primary cosmic 
ray particle transfer at extremely high energies in given models of a magnetic field in our 
galaxy (Thielheim and Langhoff 1968,1970, Karakula et a1 1971, Osborneand Wolfendale 
1973) is limited by the presence of field irregularities which give rise to multiple small 
angle scattering. 

We want to estimate the mean change of particle direction for trajectories passing 
through a layer in which there exists an irregular magnetic field, the properties of which 
are specified by its energy density and its autocorrelation function. 

The situation is different from problems which are being studied frequently by 
perturbation methods : we shall not use the restriction of random variations of the field 
strength to  be small in comparison with the mean field strength. Particle energies con- 
sidered here are extremely high. Therefore, the mean radius of curvature of particle 
trajectories remains large in comparison with the autocorrelation length of the irregular 
contribution to the field. 

In order to  make possible the direct and exact calculation of parameters related 
to the scattering of high energy particles, invariance properties are established for the 
model configuration of the magnetic field resulting in a sufficient number of constants 
of the motion. 

2. invariance properties and constants of the motion 

In view of the physical conditions of interstellar plasma and the properties of high energy 
cosmic ray particles, the magnetic field may be considered to  be stationary. The com- 
ponents of the field vector therefore, are time-independent functions of the coordinates 
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x, y, and z. Consequently particle energy is a constant of the motion : 

P + y 2 + t 2  = c2. (1) 

In addition, translational invariance of the magnetic field is introduced with respect 
to two coordinates, the x and y coordinates. The components of the field vector then 
depend on the z coordinate only. Consequently, the x and y components of generalized 
particle momentum also become constants of the motion. 

Since the divergence of the magnetic field vector is known to vanish the z component 
of the field vector is therefore constant. Referring to the condition mentioned previously, 
according to which the mean radius of curvature is large in comparison with the auto- 
correlation length, this arbitrary constant is proposed to be zero. 

As an illustration of the field topography one may imagine that within any given plane 
which is vertical to the z direction, the field lines are parallel and equidistant. 

Eventually, as a consequence of translational invariance the components of particle 
velocity may be given explicitly as functions of the z coordinate : 

i ( z )  = io - eZcE- 

j(z) = Po + eZcE- 

where eZ is the charge and E is the energy of the particle. The changes in the x and y 
components lof particle velocity are independent from their initial values. 

3. Particle trajectories in given field configurations 

The two remaining non-trivial field components may be expressed by Fourier series 
within a range 0 < z < L :  

where it is proposed that the constant terms vanish. The x and y components of particle 
velocity then also result in terms of Fourier series : 

m 

$2)  = go - (LeZc/2nE) [ P k  sin(2nkzlL) + 2qk sin2(nkz/~)]k- l,  

~ ( z )  = yo + (LeZc/2nE) 1 [uk sin(%nkz/l)+ 2bk sin2(nkz/~)]k-'. 

(6) 

(7) 

k =  1 

m 

k =  1 

4. Random field components and ensembles of particle trajectories 

The coefficients uk, bk, P k ,  and qk are now considered to be independent random variables, 
the variances of which depend on k only : 

( U : )  = (b i )  = ( p : )  = (4:) = s i .  (8) 
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Consequently, the x and y components of the magnetic field vector as well as of particle 
velocity become stationary random functions of the z coordinate. The angular brackets 
are used to indicate averaging either over the z coordinate or else, by the ergodic hypo- 
thesis, over an ensemble of realizations of the magnetic field. 

The autocorrelation function which, of course, is the same for the two field components 
is related to the spectrum of irregularities : 

m 

(H,(z)H,(z + i)) = 1 S: ~0~(2nk i /L) .  
k =  1 

(9) 

After transition from Fourier series to Fourier integrals ( L  -, CO, k/L + K, 1/L + dK, 
Lsz -, 4 ~ ) )  this relation is obtained in the form : 

The mean energy density of the irregular field may also be expressed by the spectrum 
of irregularities 

Thus, for given initial values of particle position and velocity, instead of perfectly 
determined trajectories, statistical ensembles of trajectories result. The mean change of 
the square ofthe sine of the pitch angle (that is, the angle between particle momentum and 
the z direction) is found explicitly as a function of z : 

(Asin’ 9 )  = 2e’Z2E-’ (12) 

5. Form of the autocorrelation function 

We suggest the autocorrelation function decays exponentially 

with the autocorrelation length I o  related to the cloudy structure of interstellar hydrogen. 
The same form of the autocorrelation function has been found in other phenomena of 
turbulent continuum mechanics. The resulting spectrum of irregularities is : 

It should be mentioned that the first derivative of the autocorrelation function (13) 
is not defined at = 0. In view of the symmetry of the autocorrelation function, this 
value should be re-defined as zero. Nevertheless, the first derivative of the autocorrela- 
tion function remains discontinuous at = 0. Correspondingly, it is related to a mag- 
netic field component H,(z) represented by a non-continuously differentiable function of 
z. This unpleasant situation may be overcome by means of an adequate auxiliary func- 
tion, eg 

which is continuously differentiable at i = 0 and reduces to (1 3) for c + 0. 



Multiple scattering of chargedparticles 447 

6. Mean deviations from ideal trajectories 

Insertion of (13) into (12) gives the mean change of the square of the sine of the pitch 
angle as a function of the z coordinate : 

(16) (A sin2 e) = 4n-’e2Z2(p)I~E-2[2nz/l,- 1 +exp(-2nz/l0)]. 

<A sin2 e) = 8 ~ e ~ Z ~ ( p ) E - ~ z ~  for z << I , ,  (17) 

Limiting expressions are 

where the proportionality to z2 demonstrates the prevalence of causality in particle 
transfer, and 

(A sin2 e) = 8e2Z2(p)l,E-2z for z >> I,, (18) 

where the proportionality to z indicates that particles propagate essentially at random 
in a diffusion-type process. We are, of course, interested in the latter expression. 

7. Asymptotic diffusion theory 

Although the problem presented at the beginning of this paper is essentially solved by 
(18) we wish, in the course of a more detailed discussion, to consider the combined 
distribution function f(i,Slz) in the i, plane at a given position z. We also wish to 
verify under which conditions this combined distribution function reduces to  a solution 
of a diffusion equation. 

Due to the independence of these two random variables i and 3, 

f(i, SI4 = f (~lz)fVIz) ,  (19) 

j(i1z) = [2n((Ai)2)]-1’2 exp[ - (Ai)2/2((Ai)2)], 

where, according to the central limit theorem, 

(20) 

The combined distribution function f(i, plz) is thus found to obey the following 
partial differential equation : 

which may be understood as a diffusion equation with variable diffusion coefficient : 

D ( z )  = e2Z2c2EP2  dz’(H,(z)H,(z’)). J: 
‘Ordinary’ diffusion theory enters asymptotically when z is large in comparison with the 
autocorrelation length. The diffusion coefficient then becomes constant, 

D = ae2Z2c2w(0)E-2, (24) 
with (13) one obtains: 

D = 2e2Z2c2(p)l,E- ’. (25) 
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8. Range of applicability of the individual-trajectory approach 

Introducing adequate units (eZ = 4.082 x lo-’’ g”’ cm3” s - ’  for protons, 
1 eV = 1.602 x lO-”erg, 1 pc = 3.085 x lo’* cm) the result given in (18) obtains the 
form : 

(Asin’e) = 4.94 x 1042(p)lo~E-2, (26) 

((p) in erg ~ m - ~ ,  I ,  and z in pc, E in eV). 
This relation may be used for an estimation on the range of particle energy in which 

the individual trajectory approach may be applied. The mean interstellar magnetic 
field strength is about 3 p G  (Mills 1971) corresponding to an energy density of 
3.5 x e r g ~ m - ~ .  One may guess (more or less arbitrarily) that about 20% of this 
energy density, ie 0.7 x erg cm- may be attributed to the turbulent field com- 
ponents. The typical diameter ofinterstellar clouds is ofthe order of 10 pc. The thickness 
of the layer which typically has to be traversed by protons of extremely high energy is 
about the double scale height, 300  pc. Under these conditions deviations from the ideal 
particle trajectories are found to be of the order of 2” at E = 1OI8 eV. 
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